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SUMMARY interplanetary propagation, SEP generation
and geoeffectiveness.

Our team proposed the development of a 3. Provide a complete Sun-to-Earth space
modular, adaptive, parallel software framework weather simulation tool. When run from real-
for modeling the Sun-Earth system. The goal of time observations of the region near the Sun,
the project was the development of a large-scale the solar and interplanetary modules would
model of the solar-terrestrial environment have the capability to provide an up-to-date
allowing a fuller understanding of space weather display of the calculated present state of the
and a framework to test theories and investigate solar wind in the inner heliosphere, as well as
the broad implications of new observations. a prediction for the next 24-48 hours near
Particular attention was to be devoted to CME Earth.
formation, propagation, and interaction with the 4. The model would be made available to the Air
magnetosphere; SEP acceleration in the low Force and NOAA SEC as a prototype for
corona, SEP acceleration in the interplanetary validation and operational testing.
medium, and SEP transport. We are very proud to note that all four goals

The proposed model was to be driven by real- have been met. In addition, this project supported
time observations that are incorporated into a a large number of science publications,
validated set of tightly-coupled models. We conference presentations as well as Ph.D. students
proposed that the model would be developed as a and postdocs. In the body of this final report we
set of modular routines capturing the physics of provide details of the Space Weather Modeling
interacting domains in the space environment, Framework, some of the science highlights and
providing flexibility for revision and improvement programmatic experience we gained with this
of the modules. The proposed new space weather exciting project.
modeling framework was envisioned to serve four The COSTEM project also supported over ten
complementary goals: Ph.D. students during its 6 years of funding. It
1. Provide a flexible "plug-and-play" software also helped 3 young scientists to achieve national

framework for DoD's space weather research. prominence and obtain highly coveted
Models of physics domains and/or processes instructional faculty positions (Ilia Roussev,
can be "plugged" into the framework and Aaron Ridley and Mike Liemohn).
researchers can test the response of the entire Overall, COSTEM was a successful project.
Sun-Earth system to the new modules. We all wish we could have more projects like this.

2. Enable the proposing team to develop, test We published over 100 peer reviewed papers,
and validate improved models of solar gave more than 100 invited and 174 contributed
explosive event initiation (such as CMEs), presentations at professional meetings.
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1 INTRODUCTION The integration of the three large projects
represented considerable management challenges

The P1 has been active in space science for (we will discuss these issues later), but it also
over three decades, but this MURI grant was one gave us a unique opportunity to create something
of the most enjoyable, productive and exciting that is more than the sum of its parts. The

projects he has ever participated in. We would resulting model suite is the most advanced

like to express our thanks to the DoD for giving us computational tool available today to simulate the
the opportunity to carry out this research, to complex behavior of the Sun-Earth space

AFOSR for managing the project, and to USAF environment. It is a unique tool that has been
Majors Dr. Paul Bellaire and Dr. David Byers for extensively used by our team for scientific
providing a supportive and positive environment research (we published over 100 peer reviewed
and management. papers over the lifetime of our MURI project). In

The main goal of the COSTEM project was to addition, it is continuously running at CCMC in
create a user-friendly modeling tool that enables real time as a precursor to operation transition to
the DoD and scientific communities to simulate, NOAA and the Air Force.

and eventually forecast, the system behavior of
the Sun-Earth space environment.

A very important factor in the success of the
COSTEM project was the synergism with our
NASA funded Computational Grand Challenge
(CGC)effort that supported the development of
the computational infrastructure of the Space
Weather Modeling Framework (SWMF) in close
collaboration with the Earth System Modeling
Framework (ESMF). The synergism between
COSTEM, SWMF, and ESMF was additionally
enhanced by an NSF Information Technology
Research (ITR) grant that was providing support
for research in data assimilation methodologies
applicable to the space environment, as well as
"threat adaptive" grid computing technologies,
where we dynamically allocate distributed
computational resources and increase the
resolution and throughput of the simulation on the
fly when a threatening space storm occurs on the
Sun.

The synergism between our MURI, CGC and
ITR projects was made possible by the support of
the science managers at NASA, NSF and AFOSR:
Rich Behnke, Paul Bellaire, Joe Bredekamp,
David Byers and Jim Fischer. We made their job
easier by clearly identifying and separating the
three projects at Michigan: NASA funds were In the following sections we discuss the main

used to develop computational technology, NSF accomplishments of the COSTEM project, we

funds were used for data assimilation, grid highlight some science results, outline new
computing and model validation, while DoD investigations that were made possible by the
funds were devoted to model development for the success of the COSTEM project, describe the
3D global corona, CME initiation, solar energetic management strategy, and most importantly, we

particles, inner magnetosphere, ionosphere- discuss the lessons learned from this exciting
thermosphere, radiation belts, and other regional undertaking.

phenomena.
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2 ACCOMPLISHMENTS manner from the beginning. Data naming
conventions and the use of CVS were adopted

2.1 The Four Goals of COSTEM from the beginning. Rigorous testing procedures

2.1.1 "Plug-and-Play" Software Framework have been applied from the beginning as well.
Most of the implemented modules contain unit

The Space Weather Modelin Framework tests. The components are tested individually, and
the functionality of the whole SWMF is tested by(SWMF) [29, 43] was designed in 2001 and has sse et xriig mlil ope

been developed to integrate and couple several system tests exercising multiple coupled
independently developed space physics codes intoThe SWMF and its components pass

indeendntlydevlope spce pysis coes nto this comprehensive hierarchical test suite every

a flexible and efficient model. Figure I shows the is o nsive hierchiler sitfory

schematics of the SWMF and its components. The night on several computer/compiler platforms.
main design goals of the SWMF were to minimizedocumented.

mai deigngoas o th SWF wre o mnimze The reference manual is generated from the

changes in the original models, provide a general, sou re c e u a l s rted fll the

flexible and efficient method to execute the source code using Per M scripts. All input

coupled models on massively parallel distributed parameters are documented in XML files, which
memory machines, and to allow adding new econverted into the user manual. We have also

comonets nd ew hyscs odes fr eistng developed a graphical user interface (SWMF
components and new physics models for existing GUI) to improve the usability of this complex
components with ease [29].sotae

The SWMF is written in Fortran 90 and Perl software.

and has been designed in an object-oriented We are regularly extending the SWMF with

l*EI

O1 .V http:/Csemn.angln.umlch-odu .

Figure 1. Schematic of coupling in SWMF
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new components and new component versions. It
takes typically two weeks of work from two
developers to add a new component to the

SWMF. Most of this time is spent on adopting the lo-

physics model to the SWMF and on writing and
testing the couplers between the components.
New components that do not use Cartesian grids
can take longer if they require high-performance
grid rendezvous algorithms. The SWMF currently ,

covers 10 physics domains, many of them
represented with multiple models. The SWMF is 2 I 2, .............

capable of simulating the Sun-Earth system from
the solar corona to the upper atmosphere of the
Earth faster than real time on hundreds of
processors. dramatically: BATS-R-US has been used to model

almost all planets, several moons, and comets of

BATS-R-US the solar system, flux emergence from the

The Block Adaptive Tree Solar-wind Roe photosphere to the corona [64], coronal mass

Upwind Scheme [cf. 60] has been designed and ejections [63, 75], the solar corona [70], the outer

developed to solve magnetohydrodynamic (MHD) heliosphere, etc. These applications imply that

space physics problems. BATS-R-US was BATS-R-US has been extensively validated

intended from the beginning to use massively- against observational data. The code also enables

parallel, distributed-memory machines efficiently. one to use special grids, such as spherical, toroidal

Therefore, it was decided that the code would be or the vertex-based stretched grids.

written from scratch using Fortran 90, the MPI As the complexity of BATS-R-US increased,

library for communication, and a block-adaptive, more and more of the standard software

Cartesian grid structure [60]. The resulting code engineering practices were adopted. We have

showed excellent efficiency, scaling properties been using the concurrent version control system

(see Figure 2) and portability, and resulted in (CVS) for several years. Much of the code is now

state-of-the-art space science simulations. written in a modular and object oriented fashion.

In the past 12 years, BATS-R-US has been The developers introduced a data naming

continuously developed in several ways. New convention so the code is more readable and

numerical algorithms were added: Rusanov, HLL, easier to maintain. The functionality of BATS-R-

and HLLD solvers, and various techniques to US is tested with a suite of comprehensive tests

control the divergence of the magnetic field [921, run nightly on half a dozen different computers

implicit time stepping [23] parallel field line and compilers. The input parameters are

tracing [52], oscillation-free second-order documented and described in XML format and

schemes at resolution changes [16], etc. The checked with a script for correctness. Most of the

physical equations were extended from ideal documentation is generated automatically.

MHD to resistive MHD, semi-relativistic MHD
[91], multi-species MHD and very recently to Hall 2.1.2 Development Testbed

MHD and multi-fluid MHD. We note that the With the help of the SWMF-based testbed we

MHD solvers can be used for the equations of were able to develop and apply several new

compressible hydrodynamics without any models for the quiet solar wind (synoptic wind),

modification. The block-adaptive grid can now CME initiation mechanisms, heliospheric

use generalized coordinates, including spherical, transient propagation, SEP models, and the

cylindrical and toroidal grids, interaction of interplanetary transients with the

With better and more flexible algorithms, the magnetosphere-ionosphere system.

range of applications has also widened

Page 4 of 32



TIPPORT Pl. TAMAq C

Soo

4w

no

Isis 1917 L;Il IU'o 1521 Lou Lou IS'" 1927 1*19

Is -55008me"

as

Is.

2

1*16 MY Isis 11120 192L 1923 Im im 1927 19290

40 -$daft
"C"

35

30

25

to

I:

leis 1017 lots L920 1921 1923 is" ins 1927 Is"

'Iwo, -SMOIN

1.0.05

2.6.05

Lm+os

LAOS

5.1+04

islo 11117 Isis low L221 1923 LN4 19" 1927 19"

Itelown

DA+00

Page 5 of 32



MURI F49620-01-1-0359 FINAL REPORT PI: TAMAS GOMBOSI

SYNOPTIC SOLAR WIND. rose. The early evolution proceeded with the

A prerequisite of any successful end-to-end middle of the rope rising to the photosphere and

space weather model is the ability to simulate the expanding into the corona. Just as it seemed the

background solar wind filling the inner system might approach equilibrium, the upper part

heliosphere at the time of the solar eruption. The of the flux rope began to separate from the lower,

ambient conditions are crucial for the successful mass-laden part. The separation occurred through

modeling the propagation of a time dependent stretching of the field, which forms a current

phenomena (such as CMEs). sheet, where reconnection severs the field lines to

We developed a new MHD model for form a new system of closed flux. This flux then

simulating the large-scale structure of the solar erupts into the corona. Essential to the eruption

corona and solar wind under "steady state" process were shearing motions driven by the

conditions stemming from the Wang-Sheeley- Lorentz force, which naturally occur as the rope

Arge empirical model and driven by high- expands in the pressure-stratified atmosphere. The

resolution MDI solar magnetograms [5, 70]. The shearing motions transport axial flux and energy

processes of turbulent heating in the solar wind to the expanding portion of the magnetic field,

were parameterized using a phenomenological, driving the eruption.

thermodynamical model with a variable We also developed another CME initiation

polytropic index. We employed the Bernoulli model [75] that was considering the loss of

integral to bridge the asymptotic solar wind speed equilibrium of the three-dimensional flux rope

with the distribution of the polytropic index on the configuration of Titov & Ddmoulin. We are able

solar surface. This "synoptic wind" model to determine the conditions for which stable

successfully reproduces the bulk properties of the equilibria no longer exist. Our results imply that it

"quiet" solar wind at Earth for solar minimum is possible to achieve a loss of equilibrium even
conditions (see Figure 3). though the ends of the flux rope are anchored to

niins (sigufica res r p s the solar surface. However, in order to have the
This is significant progress over previous

work, but obviously more work is needed to have flux rope escape, it is necessary to modify the

a validated, reliable synoptic wind model that can configuration by eliminating the arcade field.

be used for all solar cycle conditions.

CME INITIATION
One of the very active research areas in

heliophysics is CME initiation. This is a very

important unsolved question that has profound

consequences for space weather events. With the

help of the SWMF-based simulation testbed we

investigated several magnetically driven CME
initiation mechanisms.

We modeled the emergence of a magnetic
flux rope passing from below the photosphere into
the corona [59]. For the initial state, we prescribed
a plane-parallel atmosphere that comprises a
polytropic convection zone, photosphere,
transition region, and corona. Embedded in this
system was an isolated horizontal magnetic flux SEP TRANSPORT

rope located 10 photospheric pressure scale Solar energetic particles primarily propagate

heights below the photosphere. The flux rope was along interplanetary magnetic field lines

uniformly twisted, with the plasma temperature connecting the solar corona to the interplanetary
inside the rope reduced to compensate for the cec ting E ac rato he tranetary

magnetic pressure. Density was reduced in the meiu. esi S aetio and trnspo

middle of the rope, so that this section buoyantly
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investigate the transport and diffusive shock Figures 5 shows a comparison between

acceleration of solar energetic particles, simulated and observed white light images shortly

With the help of the SWMF testbed we were after the CME eruption. We note the excellent

able to carry out the first self-consistent agreement between the shapes of the observed and

simulation of SEP events by coupling field- simulated structures, as well as the location of the

aligned SEP transport models to simulated shock. This is a very encouraging progress in

magnetic field lines extracted from a time- modeling large CMEs as they propagate from the

evolving simulation of a CME transient low corona to Earth.

propagating through the heliosphere. The Figure 6 compares observed and simulated

technique is based on a new field line advection plasma parameters in the magnetosphere. We note

model [57] that is now part of SWMF. The the excellent overall agreement. It is particularly

transport of SEPs can now be simulated by challenging to match the magnetospheric

different SEP transport models [25, 45, 61] thus parameters simultaneously in distinct regions in

enabling us to look for experimentally verifiable the magnetosphere. At the time of this event the

distinguishing predictions. Cluster spacecraft was in the dayside
magnetosphere, Polar was magnetically connected

Too/ to the high latitude region, GOES-]0 was behind
the Earth in the closed field line region, and Wind

The SWMF with its existing model suite is an in the distant magnetotail some 150 RE

end-to-end space weather simulation tool. It has downstream.
been used to model space weather events from the

Sun to Earth [1, 19, 33, 41, 63, 100]. These
simulations employed increasingly sophisticated l-e-
models and approaches to simulate the Sun-Earth
system. In our latest simulation [1] we
successfully reproduced many signatures of the

most geoeffective Halloween storm (October 29, --

2003). In particular, we not only succeeded in "_"____________- " __

reproducing the main features of the CME at - -

Earth, but were also successful in matching _-_",_r__

magnetospheric observations in the dayside a

magnetosphere, in the nightside closed field line

region, and in the distant magnetotail.

2. 1.4 Transitioning

One of the primary goals of our MURI project

was to create a space weather simulation tool that

is robust, easy to use (well, relatively) and can be
eventually transitioned to operations. An early

attempt to transition BATS-R-US to Air Force

operations was unsuccessful, because the lack of

Page 7 of 32
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utimes a year) visiting CCMC to help to install new
code versions and solve any problems that may

I " a.1a" arise. As a result of this close collaboration,
CCMC is running SWMF in real time and publish

real-time plots on the web. This is a great service
Fto the community and a very good test of the

room, ,s,,al ,on (4114-MUcode. In fact, this is a necessary intermediate step
=-m" ,d" . ,,* in transitioning SWMF to Air Force and NOAA

1 ,W , g., ftd & 34- M 1 , 6 ,P MO, SEC operations.
"/WNW on. -,"~ Y. , In our opinion the collaboration with CCMC is

extremely beneficial to both sides and we consider
it a model for other collaborations (with the Air
Force and with NOAA SEC).

- -fl = 2.2 Selected Science Highlights

P/o/NW "M - aml Wii444%As it can be seen from the attached lists of peer
reviewed publications, invited conference
presentations and contributed talks, our MURI

project was a scientific success. The COSTEM
team published over 100 refereed papers in

leading journals and monographs. We gave over
100 invited presentations at national and
international conferences and workshops. Last but
not least, the team gave 174 contributed
presentations at various scientific meetings.

Instead of listing all scientific results (that
would make this report quite long) we simply

trained personnel at the operation center, the refer to the publications and enclose a PDF copy

complicated user interface and the lack of daily of all papers listed in the publication list. In this
communication between the code developers and section we just list a few scientific highlights to

the operators. illustrate our accomplishments. This list is
We also had discussions with NOAA SEC incomplete and somewhat subjective, but it gives

about transitioning SWMF. The new director of a cross-section of our scientific accomplishments.
SEC, Dr. Thomas Bogdan is extremely interested
in running SWMF in real time and validating the 2.2.1 Flare Heating [68]
results. However, presently SEC does not have the We have carried out a theoretical analysis of
computational resources to be able to run SWM in the thermal radiation emitted by large, eruptive

real time (or even in near real-time). In the next flares. The analysis is based on the configuration
year or so they will have access to larger NOAA shown in Figure 8 which consists of an upward
computing resources and SEC will transition the moving magnetic flux rope with a vertical current
latest version of SWMF and start real-time testing. sheet below. Reconnection at the current sheet

The interagency Community Coordinated converts the magnetic energy of the plasma

Modeling Center (CCMC) was the first external flowing into the sheet into kinetic energy and

user of BATS-R-US and SWMF. CCMC has the heat. The analysis assumes that at least half of the
personnel, the expertise and the computing Poynting flux into the sheet is channeled along
resources to utilize our high performance code. field lines to the chromosphere where it drives an
We are in regular communication with CCMC upflow of dense plasma. This process is known as
personnel and they contact us whenever they a chromospheric evaporation, and it leads to the
encounter problems with the code that they cannot formation of a system of thermal flare loops as

solve themselves. Our experts are regularly (2-3 shown in Figure 8.
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of the total magnetic energy in the configuration is
converted into the thermal energy of the flare.
The remaining 85% is channeled into the kinetic
energy of the ejected mass. However, as the
reconnection is made more difficult (e.g. by
reducing the electrical resistivity of the plasma),

the percentage of the total magnetic energy which
is thermalized increases. For MA = 0.01, about
80% of the energy is thermal and only about 20%
is transferred to the kinetic energy of the ejecta.
These variations reflect the fact that as the
reconnection rate decreases the current sheet

becomes longer, so that even though the rate at
which magnetic energy flows into the sheet

decreases, the net Poynting flux into the current
sheet increases. As MA tends to zero the thermal
energy eventually goes to zero in the absence of

The temperatures and densities resulting from any reconnection.

chromospheric evaporation were calculated using
the simple evaporative cooling model of Cargill 2.2.2 ICME Structure [28, 42]

et. al. These values were subsequently used to In an effort to understand the structure and

determine theoretical flare light curves for the time evolution of such CME-driven shocks and
Transition Region and Coronal Explorer their relevance to particle acceleration, we

(TRACE), the Soft X-ray Telescope (SXT) on the investigate the interaction of a fast CME with the

Yohkoh satellite and the Geostationary ambient solar wind by means of a three-
Operational Environnental Satellite (GOES). The dimensional numerical ideal MHD model. Our

correlation between the speed of material ejected global steady-state coronal model possesses high-
as a coronal mass ejection (CME) and any latitude coronal holes and a helmet streamer

associated flare is not straightforward. For structure with a current sheet near the equator,

example, it is possible to have two CMEs with reminiscent of near solar minimum conditions.

nearly the same trajectories and speeds but for Fast and slow speed solar wind flow at high and
which there is a tenfold difference in the peak low latitude respectively and the Archimedian

intensities of their light curves, spiral geometry of the interplanetary magnetic

The magnetic configuration used for the field is reproduced by solar rotation. Within this

calculation is based on a loss of global, ideal- model system, we drive a CME to erupt by the

MHD equilibrium in a flux rope that is suspended introduction of a Gibson-Low magnetic flux rope

in the corona by a balance between magnetic that is embedded in the helmet streamer in an

tension and compression. Equilibrium is lost initial state of force imbalance. The flux rope

when the magnetic boundary condition at the rapidly expands and is ejected from the corona

photosphere is slowly evolved to a critical point with maximum speeds in excess of 1000 km/s

where a balance between compression and tension driving a fast-mode shock from the inner corona

is no longer possible. When this point is reached, to a distance of I AU.
the flux rope erupts outwards to form a vertical We find that the ambient solar wind structure

current sheet as shown in Figure 8. strongly affects the evolution of the CME-driven

From our analysis we have found that the shocks causing deviations of the of the fast-mode

fraction of the released magnetic energy that goes shocks from their expected global configuration.
into thermal energy depends strongly on the These deflections lead to substantial compressions
reconnection rate at the current sheet. As a of the plasma and magnetic field in their

measure of the reconnection rate we use MA, the associated sheath region. The sudden post-shock

Alfvdn Mach number at the midpoint of the edge increase in magnetic field strength on low latitude

of the sheet. For MA near unity only about 15%
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field lines is found to be effective for accelerating observed, and explains many features associated

particles to the GeV range. with the shock pair.

2.2.3 Interacting CMEs [2]

Large active regions often produce CMEs in
rapid succession. When a later CME is faster
than the earlier one(s) complicated interactions
can take place in the interplanetary medium
that fundamentally change the plasma
properties in the heliosphere. We published
several papers investigating this phenomenon
[2, 33].

Here we show MHD simulation results for
coronal mass ejections originating from NOAA
active region 9236 on November 24, 2000.
These three ejections, with velocities around
1200 km/s and associated with X-class flares,
erupted from the Sun in a period of about 16.5
hr. In our simulation, the coronal magnetic field
is reconstructed from MDI magnetogram data,
the steady-state solar wind is based on a varying
polytropic index model, and the ejections are
initiated using out-of-equilibrium semi-
cylindrical flux ropes with a size smaller than
the active region. The simulations were carried
out with the SWMF.

The use of an out-of-equilibrium flux-rope
model to initiate the eruptions makes it possible
to reproduce qualitatively and quantitatively the
features of LASCO observations. We find that a
CME originating from the Sun center does not
necessarily appear as a symmetric halo in line-
of-sight images. The initial deflection of the
ejection is determined by the interaction of the
ejection with the solar magnetic field. In this

This same simulation demonstrates an case, the ejection's speed in the plane of sky

alternative explanation for forward-reverse shock can be an overestimation of the real speed of

pairs observed by Ulysses to bound high-latitude the ejection toward the Earth.

CMEs. It has been suggested that these forward- In our simulation, the transit time to Earth
CM~s It as een uggetedof the complex ejecta resulting from the three

reverse shock pairs form as a result of coronal eject rlng fro the three

mass ejections into the ambient solar wind, so ejections is 10 hr longer than the observed

called "over-expansion." Within our CME model, transit time of 54.5 hr for the first shock. A

wefind that when teCME is greater than 40 Rs previous ejection, the driver of the shock
we ithe C observed by Wind at 05:30 UT on November
from the Sun, a reverse shock forms poleward of 26, was not included in the simulation. This

the CME as a result of the interaction of the CME previous CME preconditioned the solar wind,
with the solar wind. In front of the CME, the decreasing the background density and

slow wind is deflected to higher latitude while increasing the speed. Therefore, its absence in

behind the CME, fast wind is deflected to low our simulation might contribute to the

latitude. These deflected streams collide to form a overestimation of the transit time of the

reverse shock. The shock pair formed in this way leading shock. In addition, at Earth, the

naturally occurs at high latitude in the fast wind as simulated solar wind density is too large by a
factor of 2, and the simulated magnetic field too
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weak by a factor of 2, which would make tile
simulated shocks slower than the observed ones.

Using different models for the solar wind and
the magnetic flux ropes than in our previous
simulation [33], we still find that the shock
associated with the second ejection remains a
fast-mode MHD shock at all times. As it
propagates inside the first magnetic cloud, the
jumps in pressure and density across the shock
are low. In part of the cloud, the jump in
pressure is found to be only a few percent above
the reversible compression. This could explain
why at Earth there are not always clear
signatures of the shock passage inside a cloud
other than the shorter duration of the cloud. As
the initial density and thermal pressure inside a
magnetic cloud are low, the passage of a weak
shock does not necessarily lead to a clear
signature in thermodynamic quantities.

As the first two shocks collide, there is a
temporary increase in the density jump, which
can be above the compression limit for a single
shock. Such a large compression should be
observable by the Heliospheric Imagers onboard
STEREO. This could be the clearest
observational proof of the fact that a shock
propagates inside a cloud. After the interaction
of the first two shocks, the remaining shock in
front of the magnetic clouds is the faster shock
associated with the second cloud. Indeed, its
speed and direction are consistent with the
speed and direction of the second shock before
the shocks' interaction. Because a faster,
stronger shock is now propagating into the
undisturbed solar wind, the jumps in pressure and the same time interval. Notable in both

density are greater than the jumps before the reconstructions is that the mass derived from these

shocks' interaction. The third shock becomes a two techniques gives approximately the same

compression wave when it enters the second value and that this mass is in approximately the
cloud. This is due to the large Alfvdn speed same location in spite of the extremely fast shock
inside the preceding cloud and the slow speed of that preceded the CME and that has at this time
the third shock relative to the preceding cloud, reached the Earth. Past studies have indicated that

shocked plasma may contain more small-scale
2.2.4 Heliospheric Tomography [22] (-200km) turbulence by as much as an order of

We used 3D reconstruction technique to magnitude than other interplanetary regions. If

analyze SME] data and provide density in the this were the case IPS-derived masses would be

interplanetary medium. These analyses are highly unreliable so this would negate the idea

currently being compared with LASCO that the scintillation process could be used to

coronagraph data and with interplanetary determine reliable bulk densities. Although more

scintillation data for selected time intervals (late complete analyses with other events are expected

May, 2003 and late October 2003). Figure 10 to refine this study, the clear indication for this

shows the October 28, 2003 CME reconstruction, very large event is that the differences between

and its comparison with interplanetary the IPS and white light density measurements are

scintillation g-level observations obtained during minimal. The masses using the SMEI data in the
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figure caption give an interesting comparison with injection than do quasi-perpendicular shocks.

LASCO coronagraph observations since LASCO Thus, quasi-parallel shocks accelerate

observed the upper portion of the CME to have predominantly solar wind ions, whereas quasi-

-2x1016 g out-of-the-sky-plane excess mass, and perpendicular shocks accelerate predominantly

the southern portion to have -4x106 g out-of-the- ambient energetic ions, which include material

sky-plane excess mass. from earlier impulsive events rich in heavy ions.
This feature of shock acceleration appears to

2.2.5 Analytic SEP Model [46] account for the extreme compositional variations

A calculation of the proton-excited wave often observed between events at high energies.

intensity upstream of a stationary planar shock has
been carried out. The new calculation relaxes the 2.2.6 Modeling the Inner Magnetosphere

assumption made in the previous analysis that the [52]

growth rate of a given wave with wave number k The inner edge of Earth's plasma sheet tends to

is dominated by the resonant protons with the shield the region earthward of it from the main

lowest possible energy. Although this assumption force of the magnetospheric-convection electric

is reasonable close to the shock, it is not so field, but both models indicate that changes in the

reasonable farther upstream because the upstream rate of convection can cause temporary

region is increasingly dominated by higher energy penetration of the shielding. A southward turning

particles which can more easily escape from the of the IMF causes undershielding and penetration

region near the shock. of an eastward electric field across the dayside

The calculation reveals that the wave intensity, ionosphere, raising the F-layer. Major magnetic

which is _0-6 at small k, transitions to being -k -2  storms generate Storm-Enhanced-Density (SED)

at large k with a transition wave number ko(z) events: GPS observations of Total Electron

which decreases as an inverse power of increasing Content show great plumes of enhanced density

distance from the shock. Here P (= 3 X /(x- 1 )) is that sweep across the afternoon sector of the mid-

the standard power-law spectral index for a and high-latitude ionosphere, leading to

stationary planar shock, where X is the shock substantial space weather effects, including

compression ratio. This form has important equatorial bubbles and disruption of the GPS

consequences for the variation of ion composition system. SED events apparently result from the

throughout the event including the ions which dayside eastward penetration electric field, which

arrive promptly at the observer with high makes understanding of penetration fields a

streaming anisotropy. The low-k power law, -k- 6, priority issue from a space-weather point of view.

which resonates with higher energy ions, leads to The strength and duration of the prompt-

enhancement of the heavy ions (larger A/Q) with penetration electric fields depend on the changes

increasing distance upstream of the shock. in the overall magnetic configuration of the

However, the large-k power law, -k -2 , which magnetosphere that occur in response to changes
resonates with lower energy ions, does not in solar-wind driver. Thus proper first-principles

fractionate between species with different A/Q. modeling of the phenomenon requires a code that

The resulting compositional variation seems to couples both inner and outer magnetosphere to the

account for that observed in many events, ionosphere. BATS-R-US/RCM is the first such

We have also investigated the origin of the model, so we are applying it to the prompt-

large variations in the Fe/O ratio at high energies penetration problem.

observed between different solar energetic particle The code was run for four hours with steady

(SEP) events. The origin appears to arise from the northward IMF (B,=5 nT, p=5 amu/cm', V,,=-400

magnetic obliquity of the shock. The ion seed km/s). The southward turning (to B,=-5 nT) hit

population for injection at the shock consists of the sunward boundary of the simulation box

both solar wind ions and ambient energetic (X=32 RE) at 12:00 UT. The effect reached the

particles. Quasi-parallel shocks (with upstream dayside magnetopause about 12:18 UT. Figure II

magnetic field primarily parallel to the shock shows a sequence of equipotential patterns in the

normal) have a lower energy threshold for ion northern ionosphere. Note that the disturbance

Page 12 of 32



MURI F49620-01-1-0359 FINAL REPORT PI: TAMAs GOMBOSI

effect starts approximately simultaneously in the One of the important lessons is that the P1 of a
entire ionosphere and gradually builds in strength, MURI consortium has very limited leverage with
but there are interesting subtleties. The his team members located at other institutions.
penetration field, as evidenced by equipotentials Most of the prestige and visibility associated with

that penetrate to the equator, occur simultaneously the project is focused at the PI institution and the

with similar strengths on both day and night sides. MURI project is usually not the highest priority of

The dayside equatorial electric field is eastward, the collaborating partners. They tend to do the

tending to lift the F-layer. research what they would be doing anyway, using
the additional MURI funds to supplement their

.. "existing funding base. Lesson: The PI (and the

program monitor) should not expect team
members at other institutions to do anything that
is out of the ordinary for them.

A corollary to the previous lesson is that when
a MURI proposal is submitted, the overall success
or failure must depend on the performance of the

-PI institution and it is a mistake to allow any
partner institutions to be a "single point failure"
element.

Graduate students are usually very smart
individuals, but they are still at an early stage of
their professional development. They still are

learning what is important and what can be done
later or at a slower pace. One of the important

... ' .. things they usually are still struggling with is time

management. As a consequence of these factors it
is not a 6od idea to give them tasks that are
"mission critical" for the success of a large MURI
project. Lesson: Graduate students should be
given challenging tasks, but these tasks need to be

Jsomewhat detached from the mainstream of the
project, and should not be time critical.

MURI projects, by their nature, are large
efforts that require full-time efforts by a team of
well qualified scientists who are able and willing

to work as a team. Since MURI projects primarily
fund university research groups, it is important to

3 LESSONS LEARNED have a core of scientists who can devote most of
their time and energy to the success of the project.

In our opinion this was a very successful and In practice this means that one cannot have a

enjoyable project. It met its goals, it produced successful MURI team that consists only of

good science, it contributed significantly to professors and graduate students. Professors have

graduate and postdoctoral education, and it helped far too many other responsibilities and

to propel the careers of several very talented commitments and graduate students are not ready

scientists. yet to carry out the mission critical part of the

There are several, mainly management related, work. Lesson: Successful MURI teams need to

lessons that we learned in the course of this have a professional core team of postdocs and

project. In this short section we will list some of research scientists whose primary job is the

the important lessons we learned. successful completion of the project. Professors
need to lead the team and provide intellectual
leadership, and graduate can participate, but the
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most critical tasks must be performed by Res., 112, A04208, doi: 10.1029/2006JA011846,

professional scientists. 2007.

MURI projects typically involve 5. 0. Cohen, I.V. Sokolov, I.I. Roussev, C.N. Arge,

interdisciplinary teams that need to work together W.B. Manchester, T.I. Gombosi, R.A. Frazin, H.
Park, M.D. Butala, F. Kamalabadi, and M. Velli,

efficiently. Our team established regular weekly A Semiempirical Magnetohydrodynamical Model

meetings that greatly helped us to keep the team of the Solar Wind, Astrophys. J. Left., 654, L163-

focused and stay "on the same page." In addition, L166, 2007.

we tightly integrated the team of professional 6. Glocer, T. I. Gombosi, G. T6th, K. C. Hansen, A.

scientists, and software development, algorithm J. Ridley, and A. Nagy, The Polar Wind Outflow
design and physics application was done by a Model: Saturn Results, J. Geophys. Res., 112,

single, integrated team. On the negative side this A01304, doi: 10.1029/2006JA011755, 2007.

significantly increased the daily frustration level 7. Pick, M., T.G. Forbes, G. Mann, H.V. Cane, J.

and friction, but this model resulted in a quick and Chen, A. Ciaravella, H. Cremades, R.A. Howard,

efficient resolution of emerging obstacles. Lesson: H.S. Hudson, A. Klassen, K.-L. Klein, M.A. Lee,
J.A. Linker, D. Maia, Z. Miki'c, J.C. Raymond,

ocntegrad tamsful. aevery , hefient bt MJ. Reiner, G.M. Simnett, M. Srivastava, D.

occasionally painful. Nevertheless, they are a Tripathi, R. Vainio, A. Vourlidas, J. Zhang. T.H.

major factor in success. Zurbuchen, N.R. Sheeley, and C. Marqud, Multi-

One of the very important factors in our wavelength studies of coronal mass ejections,

success was that frequent communications Space Sci. Rev., 123, 341-382, 2006.

between the PI, the team and the AFOSR Program 8. Forbes, T.G., J.A. Linker, J. Chen, C. Cid, J.

Director. This good relationship enabled us to K6ta, M.A. Lee, G. Mann, Z. Miki'c, M.S.

understand the priorities and expectations of the Potgieter, J. M. Schmidt, G.L. Siscoe, R. Vainio,

funding agency, while the Program Director had a S.K. Antiochos, and P. Riley, Coronal mass

good understanding of our progress and problems. ejections: Theory and models, Space Sci. Rev..

This enabled the Program Director to have the 123, 251-302,2006.
9. Mikic, Z. and M.A. Lee, An introduction to

AFOSR management engaged and interested intheory and models of CMEs, Space Sci. Rev.,

this MURI project. Lesson: Good communication 123, 57-80, 2006.

with the funding agency is essential. 10. Klecker, B., H. Kunow, H.V. Cane, S. Dalla, B.
Heber, K. Kecskemety, K.-L. Klein, J. K6ta, H.

4 PUBLICATIONS AND PRESENTATIONS Kucharek, D. Lario, MA. Lee, A. Posner, J.
Rodriguez-Pacheco, T. Sanderson, and G.M.

4.1 Peer Reviewed Publications Simnett, Energetic particle observations, report of
working group C, Space Sci. Rev., 123, 217-250,
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